domingo, 21 de julio de 2013

 Alcoholes

Los alcoholes son compuestos que contienen un grupo oxhidrilo, OH, unido a un átomo de carbono alifático, y esta clasificado en: Alcohol Primario, Alcohol Secundario y Alcohol Terciario





Esta clasificación es útil, ya que estas diferentes clases de alcoholes presentan diferencias en las velocidades de reacción y algunas veces dan diferentes reacciones en las mismas condiciones




Propiedades Físicas:
Las propiedades físicas de los alcoholes están relacionados con el grupo -OH, que es muy polar y es capaz de establecer puentes de hidrógeno con sus moléculas compañeras, con otras moléculas neutras, y con aniones.

Esto hace que el punto de ebullición de los alcoholes sea mucho más elevado que los de otros hidrocarburos con igual peso molecular.
El comportamiento de los alcoholes con respecto a su solubilidad también refleja su tendencia a formar puentes de hidrógeno. Así, los alcoholes inferiores, son miscibles en el agua, mientras que esta propiedad va perdiéndose a medida que el grupo lipófilo va creciendo, pues el grupo -OH deja de ser una parte considerable de la molécula.


El punto de fusión:

 aumenta a medida que aumenta la cantidad de carbonos.



Densidad: 

La densidad de los alcoholes aumenta con el número de carbonos y sus ramificaciones. Es así que los alcoholes alifáticos son menos densos que el agua mientras que los alcoholes aromáticos y los alcoholes con múltiples moléculas de –OH, denominados polioles, son más densos.



 Propiedades Quimicas:
Las reacciones químicas de los alcoholes pueden agruparse en dos categorías: aquellas en las cuales se rompe el enlace C-OH y aquellas en las que se rompe el enlace O - H.

OXIDACIÓN : la oxidacion es la reacción de alcoholes para producir ácidos carboxilicos, cetonas o aldehídos dependiendo de el tipo de alcohol y de catalizador, puede ser:
  • La reacción de un alcohol primario con  ácido crómico (CrO3) en presencia de piridina produce un aldehído



  • la reacción de un alcohol primario en presencia del reactivo de jones produce un ácido carboxilo:
  • la reacción de un alcohol secundario en presencia de permanganato de potasio produce una cetona:

DESHIDROGENACION:

 Los alcoholes primarios y secundarios cuando se calientan en contacto con ciertos catalizadores, pierden átomos de hidrógeno para formar aldehídos o cetonas. Si esta deshidrogenación se realiza en presencia de aire (O) el hidrógeno sobrante se combina con el oxígeno para dar agua.


HALOGENACION: el alcohol reacciona con el ácido hidrácido para formar haluros de alquilo mas agua:
R-OH  +  HX -------------------)    R-X   + H2O

DESHIDRATACION: es una propiedad de los alcoholes mediante la cual podemos obtener eteres o alquenos:
2 R -CH2OH  ----------------)  R - CH2 - O - CH2 - R'

R-R-OH ------------)  R=R   + H2O

REACCION CON CLORURO DE TIONILO:
El cloruro de tionilo (SOCl2) se puede usar para convertir alcoholes en el correspondiente cloruro de alquilo en una reacción simple que produce HCl gaseoso y SO2.


Usos Del Alcohol

El Metanol:
Es muy toxico, su ingestión puede causar ceguera y hasta la muerte. Es un combustible de alto rendimiento por lo que se lo usa como combustible de autos de carreras.Pero como combustible es menos conocido que el etanol debido a sus altos costos.



El Etanol
Es un líquido muy volátil y constituye la materia prima de numerosas industrias de licores,perfumes,cosmèticos y jarabes. También se usa como combustible y desinfectante .



EL PROPANOL: 
Se  utiliza como un antiséptico aún más eficaz que el alcohol etílico; su uso mas común es en forma de quita esmalte oremovedor .Disolvente para lacas, resinas, revestimientos y ceras. También para la fabricación de líquido de frenos, ácidopropiónico y plastificadores.

Esteres

Los Ésteres son compuestos orgánicos derivados de ácidos orgánicos o inorgánicos oxigenados en los cuales uno o más protones son sustituidos por grupos orgánicos alquilo (simbolizados por R').
En los ésteres más comunes el ácido en cuestión es un ácido carboxílico. Por ejemplo, si el ácido es el ácido acético, el éster es denominado como acetato. Los ésteres también se pueden formar con ácidos inorgánicos, como el ácido carbónico (origina ésteres carbónicos), el ácido fosfórico (ésteres fosfóricos) o el ácido sulfúrico. Por ejemplo, el sulfato de dimetilo es un éster, a veces llamado "éster dimetílico del ácido sulfúrico".

En la formación de ésteres, cada radical OH (grupo hidroxilo) del radical del alcohol se sustituye por la cadena -COO del ácido graso. El H sobrante del grupo carboxilo, se combina con el OH sustituido, formando agua.
En química orgánica y bioquímica los ésteres son un grupo funcional compuesto de un radical orgánico unido al residuo de cualquier ácido oxigenado, orgánico o inorgánico.
Los ésteres más comúnmente encontrados en la naturaleza son las grasas, que son ésteres de glicerina y ácidos grasos (ácido oleico, ácido esteárico, etc.)
Principalmente resultante de la condensación de un ácido carboxílico y un alcohol. El proceso se denomina esterificación:
Un éster cíclico es una lactona.




Nomenclatura de los Esteres:






La nomenclatura de los ésteres deriva del ácido carboxílico y el alcohol de los que procede. Así, en el etanoato (acetato) de metilo encontramos dos partes en su nombre:
·         La primera parte del nombre, etanoato (acetato), proviene del ácido etanoico (acético)
·         La otra mitad, de metilo, proviene del alcohol metílico (metanol).
Luego el nombre general de un éster de ácido carboxílico será "alcanoato de alquilo" donde:
·         alcan-= raíz de la cadena carbonada principal (si es un alcano), que se nombra a partir del número de átomos de carbono. Ej.:Propan- significa cadena de 3 átomos de carbono unidos por enlaces sencillos.
·         oato = sufijo que indica que es derivado de un ácido carboxílico. Ej: propanoato: CH3-CH2-CO- significa "derivado del ácido propanoico".
·         de alquilo: Indica el alcohol de procedencia. Grupo general:...
Por ejemplo: -O-CH2-CH3 es "de etilo" En conjunto CH3-CH2-CO-O-CH2-CH3 se nombra propanoato de etilo




Propiedades Fisicas de los Esteres



Los ésteres pueden participar en los enlaces de hidrógeno como aceptadores, pero no pueden participar como donadores en este tipo de enlaces, a diferencia de los alcoholes de los que derivan. Esta capacidad de participar en los enlaces de hidrógeno les convierte en más hidrosolubles que los hidrocarburos de los que derivan. Pero las ilimitaciones de sus enlaces de hidrógeno los hace más hidrofóbicos que los alcoholes o ácidos de los que derivan. Esta falta de capacidad de actuar como donador de enlace de hidrógeno ocasiona el que no pueda formar enlaces de hidrógeno entre moléculas de ésteres, lo que los hace más volátiles que un ácido o alcohol de similar peso molecular.


Propiedades Quimicas de los Esteres

En las reacciones de los ésteres, la cadena se rompe siempre en un enlace sencillo, ya sea entre el oxígeno y el alcohol o R, ya sea entre el oxígeno y el grupo R-CO-, eliminando así el alcohol o uno de sus derivados. La saponificación de los ésteres, llamada así por su analogía con la formación de jabones, es la reacción inversa a la esterificación.Los ésteres se hidrogenan más fácilmente que los ácidos, empleándose generalmente el éster etílico tratado con una mezcla de sodio y alcohol (Reducción de Bouveault-Blanc). El hidruro de litio y aluminio reduce ésteres de ácidos carboxílicos para dar 2 equivalentes de alcohol.2 La reacción es de amplio espectro y se ha utilizado para reducir diversos ésteres. Las lactonas producen dioles. Existen diversos agentes reductores alternativos al hidruro de litio y aluminio como el DIBALH, el trietil-borohidruro de litio o BH3–SiMe3 reflujado con THF.3
El dicloruro de titanoceno reduce los ésteres de ácidos carboxílicos hasta el alcano (RCH3)y el alcohol R-OH.4 El mecanismo probablemente se debe a la formación de un alqueno intermediario

El hidrógeno α de muchos ésteres puede ser sustraído con una base no nucleofílica o el alcóxido correspondiente al éster. El carbanión generado puede unirse a diversos sustratos en diversas reacciones de condensación, tales como la condensación de Claisen , la Condensación de Dieckmann y la síntesis malónica. Muchos métodos de síntesis de anillos heterocíclicos aprovechan estas propiedades químicas de los ésteres, tales como la síntesis de pirroles de Hantzsch y la síntesis de Feist-Benary.
Existen reacciones de condensación en las que se utiliza un reductor que aporte electrones para formar el enlace C-C entre grupos acilo, como el caso de la condensación aciloínica. Los ésteres pueden dar alcoholes con dos sustituyentes idénticos por adición de reactivos de Grignard. Unas aplicación de esta reacción es la reacción de Fujimoto-Belleau


ETERES

Los éteres alcohólicos son los que se obtienen por combinación de dos moléculas de alcohol con formación de una molécula de agua.
El agua se origina por la unión del (OH) de un alcohol con el átomo de hidrógeno del (OH) del otro alcohol.
Podemos encontrar dos tipos de éteres:
Éteres simples: Son los que tienen ambos restos alcohólicos iguales.
Éteres mixtos: Son los que tienen los dos restos de diferentes tamaños por ser de alcoholes distintos.

CH3 — CH2 — O — CH2 — CH2 — CH3                          CH3 — CH2 — O — CH2 — CH3
etano – oxi – propano                                                                 éter etil etílico

Otro criterio de clasificación es si pertenecen a restos alifáticos o aromáticos.
Hay dos nomenclaturas para designar a los éteres. La oficial los nombra con la palabra de los alcanos que originaron a los alcoholes enganchadas entre sí con el nexo “oxi”. Como se observa arriba en ambos ejemplos. Otra manera es nombrarlos con la palabra éter seguida de los nombres de los radicales alcohólicos en orden creciente de pesos moleculares.
Por ejemplo el etano –oxi- etano se nombra también como éter etil-etílico. Y el etano –oxi- propano se nombra como éter etil propílico.
Las reglas se mantienen para los éteres fenólicos.
Obtención de éteres:

Deshidratando alcoholes: Se usa ácido sulfúrico como deshidratante a unos 140°C para incrementar la formación del éter.
2 CH3 — CH2 — OH      ———–>     CH3 — CH2 — O — CH2 — CH3    +   H2O
        etanol                                                                     etano – oxi – etano

Síntesis de Williamson:
En este proceso se combina un alcoholato de sodio con un yoduro de alquilo y usando altas temperaturas. Permite armar éteres de distintas cadenas (mixtos).
CH3 — CH2 — ONa  +  CH3 — CH2 — CH2I   —->  CH3 — CH2 —O—(CH2)2 — CH3   +   INa
Etanolato de sodio            Ioduro de propilo                            Etano oxi Propano                             Ioduro de sodio

Propiedades Físicas:

Sus puntos de ebullición son menores que los alcoholes que lo formaron pero son similares a los alcanos de pesos moleculares semejantes. A diferencia de los alcoholes no establecen uniones puente de hidrógeno y esto hace que sus puntos de ebullición sean significativamente menores.
Son algo solubles en agua. Son incoloros y al igual que los ésteres tienen olores agradables. El más pequeño es gaseoso, los siguientes líquidos y los más pesados sólidos.
Propiedades Químicas:
No tienen hidrógenos activos como en los casos de los alcoholes o ácidos. Por este motivo son inertes ante metales como el sodio o potasio o litio. Necesitan del calor para descomponerse y ahí si poder reaccionar con algunos metales.
CH3 — CH2 –O–(CH2)2— CH3  +  2 Na  —–>  CH3 — CH2 O Na   +   CH3 — CH2 — CH2 Na
Etano oxi Propano                                                                             Etanolato de sodio            sodio propilo

Oxidación: Ante agentes oxidantes fuertes como el Dicromato de potasio, los éteres se oxidan dando aldehídos.
CH3 — CH2 —O—(CH2)2— CH3  —-> CH3 — HC = O  +  CH3 — CH2 — HC = O   + H2O

Etano oxi Propano                                    O2                 Etanal                        Propanal




BIBLIOGRAFIA

http://es.wikipedia.org/wiki/%C3%89ster
http://www.quimicayalgomas.com/quimica-organica/eteres

http://www.salonhogar.net/quimica/nomenclatura_quimica/Propiedades_alcoholes.htm